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The Role of Defects in the Transition Between 
Different Symmetries in Convective Patterns 

S. Cil iberto,  1 E. P a m p a l o n i ,  1 and C. Perez -Garc ia  2 

The properties of the transition between two patterns with different symmetries 
are studied in an experiment on thermal convection in a fluid layer heated from 
below. The defect structure is also analyzed and it is found that the unstable 
phase is present in the defect cores. The experimental results are in agreement 
with a model of three coupled Ginzhurg-Landau equations. 

KEY WORDS: Rayleigh-B6nard convection; patterns; defects; Ginzbur~ 
Landau equation. 

1. I N T R O D U C T I O N  

Periodic spatial patterns appear  in many  biological, chemical, and physical 
systems; the analysis of their stability is a subject of great current interest. 
For  example, it is impor tant  to investigate the structure of defects, the 
stability of the different symmetries, the influence of finite size, and whether 
it is possible to construct  simple models that  account  for the experimental 
results. 

One of  the simplest pat tern-forming systems in which the above-men-  
tioned features can be studied is thermal convection in a horizontal  fluid 
layer heated from below, that is, Rayleigh Bbnard convection. On  a 
labora tory  scale this fluid instability is very useful, because it is rather 
simple, in the experimental design, to take into account  all the boundary  
conditions. In this paper  we describe an example, concerning the transition 
from a structure of rolls to a hexagonal  one in convective patterns. Specifi- 
cally, we have studied the finite-size effects and the role of defects in this 
transition. It is impor tant  to point  out that  many  of our  findings are not  

1 Istituto Nazionale Ottica, 6-50125 Firenze, Italy. 
2 Departemento de Fisica, Universidad de Navarra, 31080 Pamplona, Navarra, Spain. 

1045 

0022-4715/91/0900-1045506.50/0 �9 1991 Plenum Publishing Corporation 



1046 Ciliberto et  aL 

specific to the system under study, but are rather general, because they are 
explained by topological arguments based on the symmetries of the 
problem. The general properties of Rayleigh-B6nard convection may be 
found in standard textbooks and in review papers, (1/ and thus we briefly 
mention, in Section 2, only the main features of this instability. 

The rest of the paper is organized as follows. In Section3 the 
experimental apparatus and the detection techniques are described. In 
Section 4 the transition between patterns with different symmetries is 
discussed. Section 5 is dedicated to the analysis of the defect structure. 
Finally, conclusions are presented in Section 6. 

2. R A Y L E I G H - B E N A R D  C O N V E C T I O N  

Rayleigh-B6nard convection is a fundamental mechanism of many 
natural phenomena, such as the mixing of water in the oceans, the movement 
of air in the earth's atmosphere, and the conduction of heat in stars. There 
are also many industrial applications. The cooling of big power plants is an 
example, in which the knowledge of convection properties is very impor- 
tant in order to increase the efficiency Of the heat exchange processes. To 
illustrate the general features of Rayleigh-B6nard convection, let us con- 
sider a fluid layer confined between two horizontal solid plates and heated 
from below. The most relevant parameter of this instability is the Rayleigh 
number Ra--flgA T d 3 / v z ,  where/~ is the volumetric expansion coefficient, g 
the acceleration of gravity, v the kinematic viscosity, Z the thermal diffusion 
coefficient, d the depth of the layer, and 4 T the difference of temperature 
between the two horizontal plates. When R,  exceeds the threshold value R~ 
a steady convective flow arises, producing a pattern of parallel rolls with a 
well-defined wavenumber q; a schematic view of this pattern is given in 
Fig. 1. The values of Rc and q depend on the sizes of the cell and on the 

Fig. 1. 
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Schematic drawing of convective pattern near R c. The characteristic wavelength 
2 = 2n/q is indicated. 
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nature of boundary conditions; for example, in the case of an infinite layer 
and perfect conducting plates Re=  1708 and q=3.11/d. Thus, from an 
experimental point of view, it is very important to define another 
parameter, the aspect ratio F =  L/d, where L is the horizontal length of the 
cell. When F>> 2r~/q the system has many spatial periods and the stability 
of periodic patterns may be studied near the convective threshold. The con- 
vective heat flow is strongly influenced by the presence of the walls, which 
have the effect of damping the fluid motion and thus of influencing the 
convective thresholds. 

3. E X P E R I M E N T A L  A P P A R A T U S  

A schematic cross section of a typical cell in which Rayleigh-B6nard 
convection is studied is reported in Fig. 2. The lateral walls of the cell are 
made of plexiglass. By changing the geometry and the sizes of the lateral 
walls it is possible to study the convective motion with different aspect 
ratios and boundary conditions. The bottom of the cell is a copper plate 
(CP) whose upper surface is finished to a mirror quality and is protected 
with a film of nickel to prevent oxidation. This plate is heated with an elec- 
trical resistor (ER). The upper plate is made of a sapphire window (SP) 

~Th2 

~LW 

Th5 
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Fig. 2. Schematic diagram of the cell and of the thermal regulation system: CF, convective 
fluid; CP, copper plate; ER, electrical resistor; GP, glass plate; H, heater; HE, heat exchanger; 
L, lens; LI, lock-in amplifier; LW, lateral wall; P, pump; PSI(2), Power supplies; SP, sapphire 
plate; TB, thermal bath; Thl (2, 3), thermistor 1 (2, 3); WB, Wheastone bridge; WF1 (2), 
water flows. 
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whose top is cooled by the water circulation (WF1), which is confined on 
the other side by the glass window (GP). This arrangement allows an opti- 
cal investigation of the convective motion. The cell is inside a temperature- 
stabilized box that reduces the thermal fluctuations of the environment. 
The temperature of the cooling water WF1 is stabilized by a thermal bath 
and a feedback loop that controls the temperature of the upper plate. The 
long-term stability of A T  is +0.005~ More details can be found in ref. 2. 

The qualitative features of the patterns are determined by a digitally 
enhanced shadowgraph technique. (3) An optical technique, based on the 
deflection of a laser beam that sweeps the fluid layer, (2'4~ enable us to 
obtain quantitative global and local characteristics of the pattern. The 
shadowgraph and laser beam deflection techniques are not perturbative 
and rely upon the changes of the index of refraction induced by the tem- 
perature field. The principle of the sweeping technique has been described 
elsewhere. (4) It allows us to measure the two components, averaged on the 
vertical direction, of the horizontal temperature gradient, produced by the 
convective motion. The temperature field can be simply restored by 
integration. 

4. AN E X A M P L E  OF P A T T E R N  F O R M A T I O N  

In the previous section it has been explained that, near the convective 
threshold, the fluid motion forms a pattern of rolls. This is true only 
in the cases in which the temperature dependence of fluid parameters 
can be neglected (Boussinesq conditions). On the other hand, when this 
dependence is important the pattern near threshold is composed of 
hexagons. (5'6) However, with increasing A T, hexagons become unstable and 
are replaced by rolls. Thus, convection, in this particular regime, may be 
used as a very simple pattern-forming system in which the transition 
between two different symmetries may be studied. (a7'8) The system is a 
shallow horizontal layer of pure water heated from below. The layer of 
depth d=0 .18cm is confined in a cylindrical cell of aspect ratio 
F = rid = 20, where r = 3.6 cm is the radius of the cylinder. The experiment 
has been performed at the mean working temperature of 28.3~ where the 
Prandtl number of water is 5.62 and the horizontal thermal diffusion time 
is vh = 2.45 hours. (2) The convective motion appears when the temperature 
difference A T between the two horizontal plates is equal to A T  c = 12.62~ 
With such a big ATe the temperature dependence of the transport coef- 
ficients cannot be neglected (non-Boussinesq conditions) and, therefore, a 
hexagonal pattern is formed near the convective threshold. (s) When 
e= (1--  AT/ATc)  is increased to e=eh=0 .09  the hexagonal pattern is 
replaced by a pattern of rolls. Conversely, the roll-hexagon transition 
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occurs at e = er = 0.03 when AT is decreased. As an example, we show in 
Figs. 3a and 3b the shadowgraph images of two typical patterns. White and 
dark areas correspond to cold and hot fluid, respectively. 

We see that at e = 0.02 (Fig. 3a) a very regular pattern of hexagons is 
present, whereas at e=0.14 (Fig. 3b) the rolls are already formed. The 
transition from hexagons to rolls and vice versa is quantitatively charac- 
terized by studying the temperature field T(x, y) measured with the laser 
sweeping technique mentioned in Section 3 on an array of 128 x 128 points 
on a square area of 4.9 x 4.9 cm 2. 

In Fig. 4 we report the isotherms in a small central area of the cell, for 
three different values of e. The corresponding Fourier spectra S(Kx, Ky) of 
T(x, y), computed in the full scanning area, are also shown. We see that 
the rolls slowly invade the hexagonal pattern, coming from the walls (not 
seen in Fig. 4, but observable in Fig. 3) where the perpendicular rolls 
behave like a seed of nucleation. Furthermore, we see that the amplitude 
of the peaks in the Fourier spectra changes during the transition. Thus, this 
amplitude is a good parameter to quantitatively characterize the transition. 
In looking at the spectra, one understands that the hexagonal pattern is 
composed of the sum of three sets of rolls. Each of them makes an angle 
2~/3 with both of the others. It can be shown that also the heat flow can 
be measured from the peak amplitudes. Specifically, the dimensionless heat 
flow is 

~ =  (N--  l ) R / R ~ = ~  ]Tk[ 2 (1) 
k 

Fig. 3. Shadowgraph images of two typical spatial patterns recorded at (a) e =0.02 and (b) 
e = 0.14. White area corresponds to cold fluid going down, dark area to hot fluid rising up. 
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Fig. 4. Isotherms of the temperature field T(x, y), for increasing s in a small central area of 
the cell (fiT is the temperature difference between two isotherms): (a) s = 0.022 (f iT= 0.21~ 
(b) s=0 .041  (6T=0.32~ (c) e=0.110 (6T=0.43~ (d f) Fourier spectra of the 
temperature field in the full scanning area for the same values of e as in (a-c), respectively. 
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where N denotes the Nusselt number, equal to the ratio between the total 
heat flow and the conductive heat flow (N is 1 when there is no convec- 
tion). The ~k are the dimensionless amplitudes of the Fourier modes of the 
temperature field, that is, 

T(x, y) = ~. ~ gt k exp(iK �9 r) (2) 
k 

where c~, is a suitable normalization factor introduced to satisfy Eq. (1). It 
may be computed from the theoretical analysis of refs. 8 and 9. In Fig. 4 we 
have seen that the peaks in the temperature Fourier spectrum are very 
sharp. Thus T(x, y) can be decomposed into the sum of three main sets of 
rolls: 

3 

T(x, y)=c~, ~ Aj(x, y) exp( iKj . r )+c.c .  (3) 
j = l  

where the wavevectors Kj have the modulus equal to the critical wave- 
vector Kc and 3 52j= 1 Kj = 0. The heat flow is simply 

3 
2 ~A/=(N--1)R/Rc= ~ (LAIj)x,p (4) 

j = l  

where ( . . - )x .y  means spatial average. 
To obtain the amplitudes Aj we first compute the Fourier transform 

F(Kx, Ky) of T(x, y). The Fourier spectrum S(Kx, Ky)= IFI 2 presents six 
peaks (Figs. 4), whose centers of mass are at the vertices of the vectors Kj 
and - K j .  These vectors are disposed on a hexagon in Fourier space 
(Fig. 4). Once the Kj are determined, we consider first the peak 1 and we 
shift F(Kx, Ky) of - K 1 ;  thus, the peak 1 is centered in the origin. We filter 
out the contributions of all the other peaks by multiplying the shifted 
F(Kx, Ky) by a low-pass filtering function (Hamming window) (~~ having a 
suitable cutoff in the range of the peak width. Finally, we take the inverse 
Fourier transform to get the complex amplitude A l(X, y) of the first set of 
rolls. We repeat the same procedure (shift of - K  j, low-pass filtering, and 
inverse transforms) for the two other sets of rolls. An easy calculation 
yields the real amplitude Rj as well as the phase q)j for the three sets of rolls 
of the hexagonal pattern. The phases must satisfy the following equation: 

3 Z j = 1 % = 0 .  
The competition between hexagons and rolls can be described by 

means of three coupled Ginzburg-Landau (GL) equations which deter- 
mine the behavior of the three complex amplitudes A i of the sets of rolls 
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describing the hexagonal structure. In the limit of homogeneous patterns 
these equations take the following f o r m ( 6 ) :  

O,A, =~A~ +aA*A*-c ]All2 Al-b(IA212-k 1A312) A1 (5a) 

8tA2=eA2+aA?A*-cIA212A2-b(IA~[2+IA31Z)A2 (Sb) 

c~tA3=eA3+aA2*A~-c IA312A3-b(]AII2+]A2[2)A3 ( 5 c )  

where A* denotes complex conjugate. In writing Eq. (5) the diffusive term 
[Ox- (i/2Kc) 02] 2 has been neglected because it is irrelevant for the follow- 
ing discussion. The stationary solutions of Eqs. (5) are: (i) A,. = A1 # 0 and 
A 2 = A 3 = 0  (rolls); (ii) Ah=AI = A 2 = A 3 # 0  (hexagons). The result of a 
linear stability analysis of these solutions is that rolls are stable for 

a2c 
> ~r - -  ( b  - -  c )  2 ( 6 )  

hexagons are stable for ea  < e < eh ,  where 

-- a2c 

ea - 4(2b + c) 

a2(b + 2c) 
~h-  ( b -  c) 2 

(7) 

(8) 

and the ratio between the two threshold eh, er is 

e h b + 2c 
- -  = ( 9 )  
gr C 

The coefficient a, b, c can be obtained by a best fit of the heat flow 
measurements. Specifically, for the hexagons the convective heat flow is 

3 ~ a  2 a l = 3 IAhL 2 = C 1_2C + e + ~ (a 2 + 4Ce)1/2 (10) 

where C = c + 2b. For rolls 

jV2= IArl2= - (11) 
C 

As a consequence, the slope of the heat flow gives direct information about 
the coefficient c. The same coefficient can be obtained also by the theoreti- 
cal analysis of Busse. (5) 
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The dependence of the heat flow measurements as a function of e is 
shown in Fig. 5a. We observe that there are two regions, one for hexagons 
with 0.0 < e  <0.04 and one for rolls with 0.04 <e  <0.14. The continuous 
lines are the best fits obtained from Eqns. (10), (11). The slopes of the 
linear parts of these curves are 1/c=7r=1.13_+0.02 for the rolls and 
3/C= ?h = 0.86___ 0.02 and they are both smaller than those computed by 
Busse ~5) for an infinite layer. The ratio yr/yh= 1.30_+0.05 is instead in 
perfect agreement with theory. Thus the lateral walls have the effect of 
suppressing the convective motion and introduce a multiplicative factor 
that decreases the heat transport efficiency in the same way for hexagons 
and rolls. 
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Fig. 5. (a) Dimensionless convective heat flow N. (b) Normalized ratio r (see text for 
details) as a function of 8. The arrows indicate the different evolutions of the vanishing modes 
when e increases or decreases. 
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In order to characterize quantitatively the transition thresholds, we 
also define the ratio r: 

(tA2k2)xY+ ([A3]2)x' v (12) 
2(IAtl2)x,y 

where A1 is the amplitude of the surviving set of roll, while A2, A 3 are the 
modes which disappear in the transition. In Fig. 5c the ratio r is plotted as 
a function of e. The high plateau r ~ 1 corresponds to hexagons, while the 
transition to a pattern of rolls is characterized as the limit r ~ 0. From this 
figure one can deduce that a transition from hexagons to rolls (vanishing 
of two amplitudes) occurs between er = (3.0 + 0.1) x 10 2 and 
e h = ( 9 . 0 + 0 . 5 ) x l 0  -2. These transition values are lower than those 
computed theoretically for an infinite system. However, the ratio 
eh/er = 3.0-t-0.27 is slightly smaller than the theoretical value 3.44. The 
transition thresholds are smaller because the defects, whose core contains 
the unstable phase (see next section), act as seeds of nucleation for the 
other phase. It is important to point out that the appearence of defects is 
favored by .the lateral walls. Thus, also the discrepancies between the 
theoretical and experimental thresholds can be seen as a consequence of the 
finite-size effects. 

However, the transition thresholds and their ratio may be computed 
from Eqs. (6)-(8) once the coefficients a, b, c are known by the best fits of 
the heat flow measurements. We obtain a = 8.63 x 10 -2, b = 1.3 +_ 0.06, and 
c = 0.89 _+ 0.02 and from Eq. (9), eh/e, = 3.45 _+ 0.09. This value is in perfect 
agreement with the ratio computed theoretically, (5) thus indicating that it 
is not affected by the finite-size effects. From Eqs. (6) and (8) we find that 
the thresholds computed are equal within error bars to the measured ones. 
The main conclusion is that the system (5) of three coupled Ginzburg- 
Landau equations is a good model for this transition. Moreover, this 
phenomenological procedure with which we have computed the transition 
thresholds allows us to correct the discrepancies, due to finite-size effects, 
between the theory of Busse (51 (valid for an infinite layer) and the 
experiment. 

5. THE DEFECTS 

A qualitative description of the cores of the various defects, which may 
be observed in this problem, can be deduced (11) from an elementary study 
of the nonlinear coupling existing among the modes in Eqs. (5). 

When a hexagonal pattern is developed, the stationary defects observed 
in experiments consist of pairs of pentagonal-heptagonal cells, which 
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corresponds to having a roll in the defect core (punctual defect), as we will 
show in the next paragraph. Instead the grain boundaries are the defects of 
the roll patterns and they are produced by the junction of sets of rolls with 
different orientations. The hexagonal phase is found in the defect core 
(linear defect). In our experiment (2) no penta-hepta pairs were obtained 
spontaneously. In order to analyze this kind of defect, a penta-hepta pair 
is induced in some point of the convective pattern by means of some extra 
heating, obtained by focusing the light from a powerful lamp. Once this 
defect is induced it remains without variations for a very long time, 
sufficient to make measurements. 

In Fig. 6a we report the isotherms of T(x, y) at e = 0.02; only a small 
portion of the cell is shown in order to amplify the details. The penta-  
heptha pair is easily observable in the center of the plot (Fig. 6a). tn 
Figs. 6c and 6d the two phases q~l, ~o3 are shown. We notice that in the 
core of the defect, i.e., in the common side of penta-hepta cells, q~l has a 
gap of +2~ around the core of the defect. The phase (~03 has instead no 
singularity. The phase ~02, of the third mode, has the same behavior as ~o 1, 
but has a jump of - 2 ~ ;  as a consequence it is confirmed that the sum q~ 
of the three phases is zero also in the defect. The jump of +2~ in the 
phases of two sets of rolls indicates that there is a dislocation in each of the 
two sets of rolls 1 and 2. This is confirmed by taking the amplitude R i 
along some lines that cross the singularity (lines labeled with CS1 and CS2 
in Fig. 6a). The results are shown in Figs. 6e and 61", where one can see that, 
far from the defect, the three amplitudes are almost equal, i.e., they form 
a homogeneous hexagonal pattern. In contrast in the core of the 
penta-hepta pair, the two moduli R1 and R2 go to zero, whereas the third 
o n e  R 3 increases locally in this region. This means that, locally, one has a 
pure roll in the core of the defect, i.e., the unstable solution appears in the 
defect of the stable solution. 

On the other hand, when the pattern of rolls is well developed, some 
grain boundaries with a local hexagonal structure are observed (this defect 
is very stable and remains without variation for more than 140%). The set 
of rolls in this experiment is always rather regular in the center of the cell. 
There are only a few grain boundaries produced by the readjustment of the 
rolls in the cylindrical container. We analyze now the core of one of these 
grain boundaries. The isotherms around it are reported in Fig. 7a; as in 
Fig. 6a, only a small portion of the cell is shown. This defect looks like a 
dislocation, but we will show that, in agrement with the above topological 
arguments, it is a grain boundary. 

Here we may divide Fig. 7a into an upper and a lower part. In the for- 
mer we see that there is a regular set of rolls almost parallel tO the y direc- 
tion; let us call the slowly varying amplitude of this set of rolls A o. l i t  is 
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Fig. 6. Defect in a pattern of hexagons: Penta-hepta pair. (a) Isotherms of the convective 
temperature field T(x, y) in a small area of the cell at # =0.02. (b) Spatial Fourier spectrum 
of the field of (a). (c) Equiphase lines of ~o 1. (d) Equiphase lines of ~o 3. (e) Cross sections of 
the amplitudes Rj with j = 1, 3 along the line labeled CS1 in Fig. (3a). (f) As in (e), but the 
cross sections are done along CS2 in (a). 
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Fig. 7. Defect in a pattern of rolls: grain boundary. (a) Isotherms of the convective 
temperature field T(x, y) in a small area of the cell at #=0.15.  (b) Cross sections of the 
amplitudes Rj, with j = 0 ,  3, along the line labeled CS1 in (a). (c) As in (b), but the cross 
sections are done along line labeled CS2 in (a). 

important to notice that, in the case of a grain boundary, a systems of 
equations, equal to Eqs. (5), has to be considered for each of the sets of 
rolls contributing to the formation of the defect.] Instead in the lower part 
of Fig. 7a we have two other sets of rolls, one on the right, whose 
amplitude is A1, and one on the left with amplitude A2. They join with the 
main set of rolls and form an angle of about ~z/3 between them. By taking 
the Fourier spectrum of the pattern of Fig. 7a, we notice the presence of 
eight peaks, indicating the existence of another set of rolls (labeled with 3) 
not observable in Fig. 3a. This last set of rolls forms an angle of n/3 with 
the sets 1 and 2. The sets of rolls 1, 2, and 3 form a grain boundary, which 
is a typical defect of a system where there is a hexagon-roll competition. 

We use the same procedure as in the penta-hepta pair to obtain the 
slowly varying amplitudes Rj and phases ~oj (with j = 0 ,  3) of the four 
modes present in this pattern. In Figs. 6b and 6c we show the amplitudes 
of the modes along the lines labeled CS1 and CS2 in Fig. 7a. From Figs. 7b 
and 7c one concludes that the amplitude Ro of the main set of rolls goes 
to zero in the defect region; thus, it does not give any contribution to the 
defect formation. The amplitude R 1 (Re) has a maximum where R2 (R1) 
has a minimum. In the core of the grain boundary where the two sets 1 and 
2 interpenetrate, the amplitude R3 reaches its maximum, which is smaller 
than those of the two oblique ones. Therefore, at the core of this typical 
defect in a pattern of rolls, the hexagonal unstable solution is encountered. 
Furthermore, the phases do not present any singularity. This fact confirms 
that there are no dislocations in the four sets of rolls. 

822/64/5-6-11 
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6. C O N C L U S I O N  

We have shown that Rayleigh-B6nard convection under non- 
Boussinesq conditions is a simple system where the hexagon roll competi-  
tion may be investigated. By using optical methods we have studied in 
detail the transition properties and the defect structures. All the experimen- 
tal results can be explained with a simple mathematical  model of three 
coupled G i n z b u r g - L a n d a u  equations. This system of equations explains 
also that  the unstable solution appears in the core of defects. The pen ta -  
hepta pair can be seen locally as a roll, and a grain boundary  between 
two oblique rolls gives rise locally to hexagons. These defects play an 
impor tant  role in the dynamics of the transition between these two sym- 
metries because they become seeds of nucleation for the other phase. It is 
impor tant  to stress that this is a completely general result because it is 
based on topological arguments  on a system of coupled G L  equations.lilt  
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